Dynamics with Infinitely Many Time Derivatives and
نویسندگان
چکیده
Both in string field theory and in p-adic string theory the equations of motion involve infinite number of time derivatives. We argue that the initial value problem is qualitatively different from that obtained in the limit of many time derivatives in that the space of initial conditions becomes strongly constrained. We calculate the energy-momentum tensor and study in detail time dependent solutions representing tachyons rolling on the p-adic string theory potentials. For even potentials we find surprising small oscillations at the tachyon vacuum. These are not conventional physical states but rather anharmonic oscillations with a nontrivial frequency–amplitude relation. When the potentials are not even, small oscillatory solutions around the bottom must grow in amplitude without a bound. Open string field theory resembles this latter case, the tachyon rolls to the bottom and ever growing oscillations ensue. We discuss the significance of these results for the issues of emerging closed strings and tachyon matter.
منابع مشابه
Infinitely many solutions for a bi-nonlocal equation with sign-changing weight functions
In this paper, we investigate the existence of infinitely many solutions for a bi-nonlocal equation with sign-changing weight functions. We use some natural constraints and the Ljusternik-Schnirelman critical point theory on C1-manifolds, to prove our main results.
متن کاملA VARIATIONAL APPROACH TO THE EXISTENCE OF INFINITELY MANY SOLUTIONS FOR DIFFERENCE EQUATIONS
The existence of infinitely many solutions for an anisotropic discrete non-linear problem with variable exponent according to p(k)–Laplacian operator with Dirichlet boundary value condition, under appropriate behaviors of the non-linear term, is investigated. The technical approach is based on a local minimum theorem for differentiable functionals due to Ricceri. We point out a theorem as a spe...
متن کاملNonlinear Guidance Law with Finite Time Convergence Considering Control Loop Dynamics
In this paper a new nonlinear guidance law with finite time convergence is proposed. The second order integrated guidance and control loop is formulated considering a first order control loop dynamics. By transforming the state equations to the normal form, a finite time stabilizer feedback linearization technique is proposed to guarantee the finite time convergence of the system states to zero...
متن کاملExistence results of infinitely many solutions for a class of p(x)-biharmonic problems
The existence of infinitely many weak solutions for a Navier doubly eigenvalue boundary value problem involving the $p(x)$-biharmonic operator is established. In our main result, under an appropriate oscillating behavior of the nonlinearity and suitable assumptions on the variable exponent, a sequence of pairwise distinct solutions is obtained. Furthermore, some applications are pointed out.
متن کاملAbsence of Higher Derivatives in the Renormalization of Propagators in Quantum Field Theories with Infinitely Many Couplings
I study some aspects of the renormalization of quantum field theories with infinitely many couplings in arbitrary space-time dimensions. I prove that when the space-time manifold admits a metric of constant curvature the propagator is not affected by terms with higher derivatives. More generally, certain lagrangian terms are not turned on by renormalization, if they are absent at the tree level...
متن کاملINFINITELY MANY SOLUTIONS FOR A CLASS OF P-BIHARMONIC PROBLEMS WITH NEUMANN BOUNDARY CONDITIONS
The existence of infinitely many solutions is established for a class of nonlinear functionals involving the p-biharmonic operator with nonhomoge- neous Neumann boundary conditions. Using a recent critical-point theorem for nonsmooth functionals and under appropriate behavior of the nonlinear term and nonhomogeneous Neumann boundary conditions, we obtain the result.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2002